Chem 1A Lewis Structures & VSEPR Theory Worksheet and Molecular Model Lab Report

Formula	Lewis Structure	central atoms list each central atom	number of electron domains on each central atom	bond angles around each central atom	number of electron lone pairs on each central atom	number of atoms bonded to each central atom	VSEPR geometries 1. for electron domains 2. for bonded atoms around each central atom	Lewis Structure with approximately correct bond angles (label the bond angles)	Is this molecule polar? i.e. does the molecule have a net dipole?
HF									
H ₂ O									
NH ₃									
CH ₄									
CO ₂									

NIII +				
NH ₄ ⁺				
H_3O^+				
ICl ₂ ·				
1012				
H ₂ SO ₄				
SO ₄ ²⁻				
N ₂ H ₄				
H ₂ O ₂				
11202				

HCN					
CH ₃ OH					
gy gooy					
CH ₃ COOH					
SO ₂					