- 1. Tritium (³H) decays by beta emission with a half-life of 12.26 years. A sample of tritiated compound has an initial activity of 0.833 Bq. Calculate the number N_i of tritium nuclei in the sample initially, the decay constant k, and the activity after 2.50 years.
- 2. Over geological time, an atom of ²³⁸U decays to a stable ²⁰⁶Pb atoms by the emission of eight alpha emissions, each of which leads to the formation of one helium atom. A geochemist analyzes a rock and finds that it contains 9.0 x 10⁻⁵ mL of helium (at STP) per gram and 2.0 x 10⁻⁷ g of ²³⁸U per gram. Estimate the age of the mineral, given that the half life of ²³⁸U is 4.47 x 10⁹ years.
- 3. The half lives of 235 U and 238 U are 7.04 x 10^8 and 4.47 x 10^9 years respectively, and the present abundance ratio is 238 U/ 235 U = 137.7. It is thought that their abundance ratio was 1 at some time **before** our earth and solar system were formed about 4.5×10^9 years ago. Estimate how long ago the supernova occurred that supposedly produced all the uranium isotopes in equal abundance, including the two longest lived isotopes, 238 U and 235 U.
- 4. The beta decay of ⁴⁰K that is a natural part of the body makes all human beings slightly radioactive. An adult weighing 70.0 kg contains about 170 g of potassium. The relative abundance of ⁴⁰K is 0.0118%, its half-life is 1.28 x 10⁹ years, and its beta particles have an average kinetic energy of 0.55 MeV. (There are 1.602 x 10⁻¹³J/MeV)

a. Calculate the total activity of ⁴⁰K in this person.

b. Determine (in rad per year) the annual radiation absorbed dose arising from this internal ⁴⁰K.